a.
- Với \(y=1\) vế trái hữu tỉ, vế phải vô tỉ (ktm)
- Với \(y\ge4\Rightarrow y!=8k\Rightarrow\left(\sqrt{3}\right)^y=\left(\sqrt{3}\right)^{8k}=81^k\equiv1\left(mod10\right)\)
Mà \(6^x\equiv6\left(mod10\right)\) ; \(11^x\equiv1\left(mod10\right)\Rightarrow10+11^x+6^x\equiv7\left(mod10\right)\)
\(\Rightarrow\) Pt vô nghiệm
- Với \(y=2\Rightarrow\left(\sqrt{3}\right)^y=3\equiv3\left(mod10\right)\) (vô nghiệm do \(VT\equiv7\left(mod10\right)\) theo cmt)
- Với \(y=3\Rightarrow10+11^x+6^x=27\)
\(\Rightarrow11^x+6^x=17\Rightarrow x=1\)
Vậy \(\left(x;y\right)=\left(1;3\right)\)
b.
Với \(x\ge4\Rightarrow x!=8k\Rightarrow2^{x!}=2^{8k}=256^k\equiv6\left(mod10\right)\)
Và \(6^y\equiv6\left(mod10\right)\Rightarrow2^{x!}+6^y\equiv12\left(mod10\right)\Rightarrow\) vế trái ko chia hết cho 10 trong khi VP chia hết cho 10 (loại)
Với \(x=1\Rightarrow2+6^y\equiv8\left(mod10\right)\Rightarrow\) vô nghiệm
Với \(x=2\Rightarrow4+6^y=10^y\Rightarrow y=1\)
Với \(x=3\Rightarrow64+6^y=10^y\Rightarrow y=2\)
Vậy \(\left(x;y\right)=\left(2;1\right);\left(3;2\right)\)