Tìm x,y,z biết
\(\sqrt{\left(x+3\cdot\sqrt{5}\right)^2}+\sqrt{\left(y-3\cdot\sqrt{5}\right)^2}+|x+y+z|=0\)
1.Tìm các số x, y, z thỏa mãn đẳng thức\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
2.Tìm x,y,z biết : \(x+y=x\div y=3\left(x-y\right)\)
Tìm x biết: \(n\in N\)
\(\left(a\right)x\sqrt{3}+3=y\sqrt{3}-x\)
\(\left(b\right)\left(x-2\right)\sqrt{25n^2+5}+y-2=0\)
1. Tìm x, biết:
a) \(9^{x-1}=\frac{1}{9}\)
b) \(\frac{1}{3}:\sqrt{7-3x^2}=\frac{2}{15}\)
2. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !
a) cho C = 3 - \(3^2+3^3-3^4+3^5-3^6+...+3^{23}-3^{24}\), chứng minh rằng C \(⋮\) 420
b) tìm x và y biết \(\left(x+1\right)^{2022}+\left(\sqrt{y-1}\right)^{2023}=0\)
Tìm x,y,z thỏa mãn; \(\sqrt{\left(x-\sqrt{5}\right)^2}\)+\(\sqrt{\left(y+\sqrt{3}\right)^2}\)+ lx-y-zl=0
Tìm x,y,z thỏa mãn: \(\sqrt{\left(x-\sqrt{5}\right)^2}\)+ \(\sqrt{\left(y+\sqrt{3}\right)^2}\)+ lx-y-zl =0
tim x,y,z biet \(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|\)