\(a,\left(\dfrac{1}{1011}\right)^{x+1}.2022^{x+1}=32\\ \Leftrightarrow\left(\dfrac{1}{1011}.2022\right)^{x+1}=2^5\\ \Leftrightarrow2^{x+1}=2^5\\ \Leftrightarrow x+1=5\\ \Leftrightarrow x=4\)
\(b,\left(2x+\dfrac{1}{5}\right)^3=\left|0,3-\dfrac{1}{2}\right|^5:\left(2x+\dfrac{1}{5}\right)^2\\\Leftrightarrow\left(2x+\dfrac{1}{5}\right)^3.\left(2x+\dfrac{1}{5}\right)^2=\left|0,3-0,5\right|^5\\ \Leftrightarrow \left(2x+\dfrac{1}{5}\right)^5=\left|-0,2\right|^5\\ \Leftrightarrow\left(2x+\dfrac{1}{5}\right)^5=0,2^5\\ \Leftrightarrow2x+0,2=0,2\\ \Leftrightarrow2x=0\\ \Leftrightarrow x=0\)