Xét \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(\)\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)luôn đúng
=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
Dấu bằng xảy ra khi a=b=c
Áp dụng ta có
\(\left(2x+1\right)^2+\left(-y\right)^2+\left(y-2x\right)^2\ge\frac{1}{3}\left(2x+1-y+y-2x\right)^2=\frac{1}{3}=VP\)
Dấu bằng xảy ra khi \(2x+1=-y=y-2x\)=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)
Vậy \(x=y=-\frac{1}{3}\)
\(\left(2x+1\right)^2+y^2+\left(y-2x\right)^2=\frac{1}{3}\)
\(\Leftrightarrow3\left(x-y\right)^2+\left(3x+1\right)^2=0\)
\(\Leftrightarrow x=y=-\frac{1}{3}\)
\(\left(2x+1\right)^2+y^2+\left(y-2x\right)^2=\frac{1}{3}\)
\(\Leftrightarrow3\left(x-y\right)^2+\left(3x+1\right)^2=0\)
\(\Leftrightarrow x=y=-\frac{1}{3}\)
Chúc bạn học tốt !!!