\(c,\)\(\left(x-1\right)+\left(x-2\right)+....+\left(x-100\right)=50\)
\(\left(x+x+...+x\right)-\left(1+2+...+100\right)=50\)
\(100x-5050=50\)
\(100x=50+5050\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
\(a,\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=7\)
\(b,x+\left(1+2+3+...+50\right)=2000\)
\(x+\frac{\left[1+50\right]\cdot\left[\left(50-1\right)\div1+1\right]}{2}=2000\)
\(x+1275=2000\)
\(\Rightarrow x=2000-1275=725\)
c , ( x - 1 ) + ( x - 2 ) + ...... + ( x - 100 ) = 50
( x + x + ........ + ) - ( 1 + 2 + ..... + 100 ) = 50
100x - 5050 = 50
100x = 50 + 5050
100x = 5100
=> x = 5100/100 = 51
(x + x ......+x)-(1+2+......+100)=50
100x-5050 = 50
100x=50+5050
100x=5100
\(\left(x+1\right)+\left(x+2\right)+....+\left(x+100\right)=5750\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Rightarrow100x+\left(100+1\right).100:2=5750\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=5750-5050=600\Rightarrow x=600:100=6\)
\(\text{c , ( x - 1 ) + ( x - 2 ) + ...... + ( x - 100 ) = 50}\)
\(\text{( x + x + ........ + ) - ( 1 + 2 + ..... + 100 ) = 50}\)
\(\text{100x - 5050 = 50}\)
\(\text{100x = 50 + 5050}\)
\(\text{100x = 5100}\)
\(=>x=\frac{5100}{100}=51\)
a) (x+1)+(x+2)+(x+3)+...+(x+100)=5750
<=> (x+x+...+x)+(1+2+3+...+100)=5750
<=> 100x+\(\frac{\left(100+1\right)\cdot100}{2}=5750\)
<=>100x+5050=5750
<=> 100x=700
<=> x=7
Vậy x=7
b)x+(1+2+...+50)=2000
<=> x+\(\frac{\left(50+1\right)\cdot50}{2}=2000\)
<=> \(x+1275=2000\)
<=> x=725
Vậy x=725