Lời giải:
$4x^2-2x-1=0$
$\Leftrightarrow [(2x)^2-2.2x.\frac{1}{2}+(\frac{1}{2})^2]-\frac{5}{4}=0$
$\Leftrightarrow (2x-\frac{1}{2})^2=\frac{5}{4}$
$\Rightarrow 2x-\frac{1}{2}=\pm \frac{\sqrt{5}}{2}$
$\Leftrightarrow 2x=\frac{1\pm \sqrt{5}}{2}$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{4}$
$x^4-4x^2-32=0$
$\Leftrightarrow (x^2-2)^2-36=0$
$\Leftrightarrow (x^2-2-6)(x^2-2+6)=0$
$\Leftrightarrow (x^2-8)(x^2+4)=0$
Vì $x^2+4>0$ với mọi $x$ nên $x^2-8=0$
$\Leftrightarrow x=\pm 2\sqrt{2}$
a) Ta có: \(4x^2-2x-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot4\cdot\left(-1\right)=4+16=20\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}\\x_2=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
b) Ta có: \(x^4-4x^2-32=0\)
\(\Leftrightarrow x^4-8x^2+4x^2-32=0\)
\(\Leftrightarrow x^2=8\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)