`2x^2 + 2x - 0,8 = -4/5`
`<=> 2x^2 + 2x = -4/5 + 0,8`
`<=> 2x(x+1) = 0`
`<=> `\(\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2x2 + 2x - 0,8 = - 4/5
=> 2x2 + 2x = - 4/5 + 0,8
=> 2x(x + 1) = 0
=> 2x = 0 <=> x = 0
=> x + 1 = 0 <=> x = - 1
vậy x = [0 , - 1]
\(2x^2+2x-0,8=-\dfrac{4}{5}\)
`=>` \(2x\left(x+1\right)=-\dfrac{4}{5}+0,8\)
`=>2x(x+1)=0`
`=>`\(\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\)`<=>` \(\left[{}\begin{matrix}x=0:2\\x=0-1\end{matrix}\right.\)`<=>` \(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)