a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)
Ta có : |x(x2 - 3)| = x
<=> x(x2 - 3) = x <=> x2 - 3 = x : x = 1 <=> x2 = 4
Vì x \(\ge\) 0 nên x = 2
a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)
Ta có : |x(x2 - 3)| = x
<=> x(x2 - 3) = x <=> x2 - 3 = x : x = 1 <=> x2 = 4
Vì x \(\ge\) 0 nên x = 2
Đề này dùng để cho các bạn lớp 7 tham khảo , không cần giải , bài nào không biết thì nói với mình
Câu 1: Tính
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2013}\right)\left(1-\frac{1}{2014}\right)\)
\(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Câu 2: Cho \(\frac{2x+2y-z}{z}=\frac{2x+2z-y}{y}=\frac{2z+2y-x}{x}\) (với x,y,z là các số hữu tỉ dương)
Tính giá trị của \(C=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
CHO x;y thuộc Z và x;y khác 0
thỏa mãn \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\left(x+y\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{2}{xy}=4\)
TÍNH E=x+y
Giải hệ pt:
1.\(\sqrt[4]{x}\left(\left\{\left\{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right\}\right\}\right)=2\)
2.\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)
SOS
tìm x
\(\frac{3}{2}\log_{\frac{1}{2}}\left(x+2\right)^2-3=\log_{\frac{1}{4}}\left(4-x\right)^3+\log_{\frac{1}{4}}\left(6+x\right)^3\)
( Toán lớp 7 ) giúp mình với !!!!!!
a) Tính : \(\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)....\left(\frac{3^{2000}}{2003}-81\right)\)
b) Tính giá trị của biểu thức : \(6x^2+5x-2\) tại x thoả mãn \(\left|x-2\right|=1\)
tìm giá trị lớn nhất , nhỏ nhất trên \(\left[\frac{1}{4};4\right]\)của \(y=\frac{1}{3}log_{\frac{1}{2}}^3x+log^2_{\frac{1}{2}}x-\left(3log_{\frac{1}{2}}x\right)+1\)
Cho x, y, z là các số nguyên khác 0 và x - y - z =0, tính:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
Cho x và y là các số dương có tổng bằng 1.
CMR: \(\left(y+\frac{1}{x}\right)^2+\left(x+\frac{1}{y}\right)^2\ge\frac{25}{2}\)
Tìm các số nguyên x,y,z,t biết:
$\frac{27}{4}$274 =$\frac{-x}{3}$−x3 =$\frac{\left(z+3\right)^3}{-4}$(z+3)3−4 =$\frac{\left|t-2\right|}{8}$//t/−2/8
chú ý / là giá trị tuyệt đối