\(\Rightarrow18xy-12x+6y=174\\ \Rightarrow6x\left(3y-2\right)+6y-4=170\\ \Rightarrow6x\left(3y-2\right)+2y\left(3y-2\right)=170\\ \Rightarrow\left(3y-2\right)\left(3x+y\right)=85=1.85=\left(-1\right)\left(-85\right)=5.17=\left(-5\right)\left(-17\right)\)
\(3y-2\) | 1 | 85 | -1 | -85 | 5 | 17 | -5 | -17 |
\(3x+y\) | 85 | 1 | -85 | -1 | 17 | 5 | -17 | -5 |
\(x\) | 28 | \(-\dfrac{28}{3}\left(loại\right)\) | \(-\dfrac{16}{3}\left(loại\right)\) | \(0\) | ||||
\(y\) | 1 | 29 | \(\dfrac{1}{3}\left(loại\right)\) | \(-\dfrac{83}{3}\left(loại\right)\) | \(\dfrac{7}{3}\left(loại\right)\) | \(\dfrac{19}{3}\left(loại\right)\) | \(-1\) | \(-5\) |
Vậy \(\left(x;y\right)=\left(28;1\right);\left(0;-5\right)\)
⇒18xy−12x+6y=174⇒6x(3y−2)+6y−4=170⇒6x(3y−2)+2y(3y−2)=170⇒(3y−2)(3x+y)=85=1.85=(−1)(−85)=5.17=(−5)(−17)⇒18xy−12x+6y=174⇒6x(3y−2)+6y−4=170⇒6x(3y−2)+2y(3y−2)=170⇒(3y−2)(3x+y)=85=1.85=(−1)(−85)=5.17=(−5)(−17)
3y−23y−2 | 1 | 85 | -1 | -85 | 5 | 17 | -5 | -17 |
3x+y3x+y | 85 | 1 | -85 | -1 | 17 | 5 | -17 | -5 |
xx | 28 | −163(loại)−163(loại) | 00 | |||||
yy | 1 | 29 | −833(loại)−833(loại) | 193(loại)193(loại) | −1−1 | −5−5 |
Vậy (x;y)=(28;1);(0;−5)