`(x-3)^2+x(1-x)=3`
`<=>x^2-6x+9+x-x^2-3=0`
`<=>-5x+6=0`
`<=>5x=6`
`<=>x=6/5`
Vậy `S={6/5}`
Khai triển ra ta có :
x^2-6x+9 + x - x^2 =3
<=> -5x = -6
<=> x=6/5
Ta có: \(\left(x-3\right)^2+x\left(1-x\right)=3\)
\(\Leftrightarrow x^2-6x+9+x-x^2-3=0\)
\(\Leftrightarrow-5x+6=0\)
hay \(x=\dfrac{6}{5}\)