\(\hept{\begin{cases}\frac{1}{2}x+y=-\frac{5}{2}\\x+\frac{1}{2}y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x+y=-\frac{5}{2}\left(1\right)\\x=1-\frac{1}{2}y\left(2\right)\end{cases}}\)
Thay vào phương trình 1 ta có : \(\frac{1}{2}\left(1-\frac{1}{2}y\right)+y=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{4}y+y=-\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{4}y=3\Leftrightarrow y=4\)
Thay vào phuwong trình 2 ta có : \(x=1-\frac{1}{2}.4=1-2=-1\)
\(\hept{\begin{cases}\frac{1}{2}x+y=-\frac{5}{2}\\x+\frac{1}{2}y=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{4}x+\frac{1}{2}y=-\frac{5}{4}\\x+\frac{1}{2}y=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{4}x+\frac{1}{2}y=-\frac{5}{4}\\-\frac{3}{4}x=-\frac{9}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{4}\cdot3+\frac{1}{2}y=-\frac{5}{4}\\x=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{3}{4}+\frac{1}{2}y=-\frac{5}{4}\\x=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=-4\\x=3\end{cases}}\)
=> HPT có nghiệm x;y = (3;-4)
\(\hept{\begin{cases}\frac{1}{2}x+y=-\frac{5}{2}\left(1\right)\\x+\frac{1}{2}y=1\left(2\right)\end{cases}}\)
\(x+\frac{1}{2}y=1\Leftrightarrow x=1-\frac{1}{2}y\)
Thế vào (1) ta được :
\(\frac{1}{2}\left(1-\frac{1}{2}y\right)+y=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{4}y+y=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{2}+\frac{3}{4}y=-\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{4}y=-3\)
\(\Leftrightarrow y=-4\)
Thế vào (2) ta được :
\(x+\frac{1}{2}\cdot\left(-4\right)=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
Vậy x = 3 ; y = -4