Để B có nghĩa thì:
\(\left\{{}\begin{matrix}x-1\ge0\\x-1\ne0\\\sqrt{x^2}-4x+4\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne\dfrac{4}{3}\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
Để B có nghĩa thì:
\(\left\{{}\begin{matrix}x-1\ge0\\x-1\ne0\\\sqrt{x^2}-4x+4\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne\dfrac{4}{3}\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
Tìm điều kiện có nghĩa:
1) \(-\dfrac{1}{\sqrt{a+2}}\)
2) \(\sqrt{\dfrac{3}{\left(x-2\right)^2}}\)
3) \(\sqrt{\dfrac{-3}{a^2-4a+4}}\)
4) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
5) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
6) \(\sqrt{\dfrac{-4}{x^2-1}}\)
7) \(\sqrt{\dfrac{x+1}{x-2}}\)
8) \(\sqrt{\dfrac{x-2}{x+3}}\)
tìm x để biểu thức sau có nghĩa
a) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
b) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
giải chi tiết hộ mình với ạ !!!
Tìm x để căn thức sau xác định
a)A=\(\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\)
b)B=\(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\)
Bài 3: Tìm x biết:
a) \(\sqrt{3x-2}=4\)
b) \(\sqrt{4x^2+4x+1}-11=5\)
Bài 4: Cho biểu thức
C= \(1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) (x > 0, x ≠ 1)
a) Rút gọn C
b) Tìm x để C - 6 < 0
Helpp!!!
Tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{x-2}-\sqrt{4-x}\)
b, \(\dfrac{1}{\sqrt{x+1}-1}\)
c, \(\sqrt{x^2-4x+3}\)
d, \(\sqrt{-x^5}\)
e, \(\sqrt{\dfrac{x-3}{2-x}}\)
g, \(\sqrt{-\left|x-2\right|}\)
h, \(\sqrt{4x^2-4x+1}\)
Mình đang cần gấp, sắp phải nộp rồi
Bài 1: Tìm x để biểu thức có nghĩa
a) \(\dfrac{-5}{\sqrt{10x+2}}\) d)\(\sqrt{\dfrac{3-12x}{-4}}\)
b) \(\sqrt{\dfrac{-5}{10x+2}}\) e)\(\sqrt{x^2+1}\)
c)\(\sqrt{\dfrac{8-4x}{10}}\) f) \(^{\dfrac{10}{\sqrt{2020-2021}}}\)
g) \(\sqrt{\dfrac{2x-8}{x^2+1}}\)
Giúp mk vs, sắp pk nộp r :<<
Thanks ạ
Tìm điều kiện có nghĩa:
1) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
3) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
Câu 3: Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{3}{\sqrt{x}+1}\) + \(\dfrac{6\sqrt{x}-4}{1-x}\)
a. Tìm điều kiện của x để A có nghĩa rồi rút gọn A. Tính giá trị của A khi x = 6-2\(\sqrt{5}\)
b. Tìm giá trị của x để A < \(\dfrac{1}{2}\)
c. Tìm giá trị nhỏ nhất của biểu thức A