+++++\(x+5x^2=0\) \(\Leftrightarrow x.\left(1+5x\right)=0\) \(\Leftrightarrow\hept{\begin{cases}x=0\\1+5x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}}\)
++++\(\left(x+1\right)^2=x+1\) \(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\) \(\Leftrightarrow\left(x+1\right).\left(x+1-1\right)=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)
++++\(5x.\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
a) x + 5x^2 = 0
=> x(1+5x) = 0
=> \(\orbr{\begin{cases}x=0\\1+5x=0\end{cases}}\) => \(\orbr{\begin{cases}x=0\\5x=-1\end{cases}}\) => \(\orbr{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}\)
Vậy: x=0 hoặc x=-1/5
b) (x+1)^2 = x+1
=> (x+1)(x+1) = x+1
=> x+1 = (x+1) : (x+1)
=> x+1 = 1
=> x = 0
Vậy: x = 0
c) 5x(x-1) = x-1
=> 5x = (x-1) : (x-1)
=> 5x = 1
=> x = 1/5
Vậy: x = 1/5