đk x khác 4 ; x >= 0
\(\dfrac{2\sqrt{x}+4}{x-4}+1< 0\Leftrightarrow\dfrac{x-2+2\sqrt{x}+4}{x-4}< 0\)
mà \(x+2\sqrt{x}+2>0\) với mọi x
\(\Rightarrow x-4< 0\Leftrightarrow x< 4\)
Kết hợp đk vậy 0 =< x < 4
đk x khác 4 ; x >= 0
\(\dfrac{2\sqrt{x}+4}{x-4}+1< 0\Leftrightarrow\dfrac{x-2+2\sqrt{x}+4}{x-4}< 0\)
mà \(x+2\sqrt{x}+2>0\) với mọi x
\(\Rightarrow x-4< 0\Leftrightarrow x< 4\)
Kết hợp đk vậy 0 =< x < 4
Rút gọn:
\(C=\dfrac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\dfrac{4}{x^2}-\dfrac{4}{x}+1}}\)
Tìm max:
\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}+\dfrac{2x^2+4}{1-x^3}\)
Rút gọn:
\(C=\left(\dfrac{1}{x+1}-\dfrac{x+3\sqrt{x}-4}{\left(x^2-1\right)\left(\sqrt{x}+4\right)}\right):\dfrac{\sqrt{x}+1}{x^2\sqrt{x}+x^2-\sqrt{x}-1}\)
Rút gọn:
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+1}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{x-\sqrt{x}-4}{x+\sqrt{x}-2}\right)\)
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
tìm x biết :
4x(x+1) = 8(x+1)
x(2x+1) +\(\dfrac{1}{3}-\dfrac{2}{3}x=0\)
x(x-4) +(x-4)2 =0
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
Bài 4: Cho biểu thức A \(=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x^2}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b)Tìm x để A > 0
c) Tìm x biết x2 + 3x + 2 \(=0\)
d) Tìm x để A đạt GTLN, tìm GTLN đó
BT2: Trong các biểu thức sau, biểu thức nào là đơn thức?
\(\left(1-\dfrac{1}{\sqrt{3}}\right)x^2,\dfrac{1}{2}\left(x^2-1\right),\dfrac{x^2.7}{2},6\sqrt{y},\dfrac{1-\sqrt{5}}{x},\dfrac{x-y^2}{4}\)