a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Trả lời:
a, 4x2 - 49 = 0
<=> ( 2x - 7 ) ( 2x + 7 ) = 0
<=> 2x - 7 = 0 hoặc 2x + 7 = 0
<=> 2x = 7 hoặc 2x = - 7
<=> x = 7/2 hoặc x = - 7/2
Vậy S = { 7/2; - 7/2 }
b, x2 + 36 = 12
<=> x2 + 36 - 12x = 0
<=> x2 - 2 . x . 6 + 62 = 0
<=> ( x - 6 )2 = 0
<=> x - 6 = 0
<=> x = 6
Vậy S = { 6 }
c, \(\frac{1}{16}x^2-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4}x\right)^2-2.\frac{1}{4}x.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4}x-2\right)^2=0\)
\(\Leftrightarrow\frac{1}{4}x-2=0\)
\(\Leftrightarrow\frac{1}{4}x=2\)
\(\Leftrightarrow x=8\)
Vậy S = { 8 }
e, ( x - 2 )2 - 16 = 0
<=> ( x - 2 - 4 ) ( x - 2 + 4 ) = 0
<=> ( x- 6 ) ( x + 2 ) = 0
<=> x - 6 = 0 hoặc x + 2 = 0
<=> x = 6 hoặc x = - 2
Vậy S = { 6; - 2 }
f, x2 - 5x - 14 = 90
<=> x2 - 7x + 2x - 14 = 0
<=> ( x2 - 7x ) + ( 2x - 14 ) = 0
<=> x ( x - 7 ) + 2 ( x - 7 ) = 0
<=> ( x + 2 ) ( x - 7 ) = 0
<=> x + 2 = 0 hoặc x - 7 = 0
<=> x = - 2 hoặc x = 7
Vậy S = { 2; - 7 }
g, 8x ( x - 3 ) + x - 3 = 0
<=> 8x ( x - 3 ) + ( x - 3 ) = 0
<=> ( x - 3 ) ( 8x + 1 ) = 0
<=> x - 3 = 0 hoặc 8x + 1 = 0
<=> x = 3 hoặc x = - 1/8
Vậy S = { 3; - 1/8 }