\(3-\left(2x+\frac{1}{2}\right)\div\frac{1}{2}=2\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)\div\frac{1}{2}=3-2\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)\times2=1\)
\(\Leftrightarrow2x+\frac{1}{2}=\frac{1}{2}\)
\(\Leftrightarrow2x=\frac{1}{2}-\frac{1}{2}\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\div2\)
\(\Leftrightarrow x=0\)
Vậy x = 0
\(3-\left(x\times2+\frac{1}{2}\right):\frac{1}{2}=2\)
\(\left(x\times2+\frac{1}{2}\right):\frac{1}{2}=3-2\)
\(\left(x\times2+\frac{1}{2}\right):\frac{1}{2}=1\)
\(x\times2+\frac{1}{2}=1\times\frac{1}{2}\)
\(x\times2+\frac{1}{2}=\frac{1}{2}\)
\(x\times2=\frac{1}{2}-\frac{1}{2}\)
\(x\times2=0\)
x = 0 : 2
x = 0
Vậy x = 0
3-(x*2+1/2)=2*1/2
3-(x*2+1/2)=1
x*2+1/2=3-1
x*2+1/2=2
x*2=2-1/2
x*2=3/2
x=3/2:2
x=3/4
\(3-\left(x\times2+\frac{1}{2}\right):\frac{1}{2}=2\)
\(\Leftrightarrow\left(x\times2+\frac{1}{2}\right):\frac{1}{2}=1\)
\(\Rightarrow x\times2+\frac{1}{2}=\frac{1}{2}\)
\(\Leftrightarrow x\times2=0\)
\(\Leftrightarrow x=0\)