\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+3\\2x-1=-x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=3+1\\2x+x=-3+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}\)
(2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0 (phân tích ra hằng đẳng thức số 3)
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0 (bỏ ngoặc)
(x - 4)(3x + 2) = 0 (rút gọn)
Hoặc x - 4 = 0 => x = 4
=> A=0 hoặc B=0 Hoặc 3x + 2 = 0 => 3x = 2 => x = -2/3
Vậy x = { 4 ; -2/3}
Đề: (2x-1)^2 - (x+3)^2=0
3x^2= 10x + 8
(x - 4) (3 x + 2) =0
3 x^ 2 - 10x - 8 =0
=> x= âm 2/3
x = 4
Input: (2 x - 1)^2 - (x + 3)^2 = 0
3 x^2 = 10 x + 8
(x - 4) (3 x + 2) = 0
3 x^2 - 10 x - 8 = 0
Solutions:Approximate formsStep-by-step solution
x = -2/3
x= 4
3x^2 = 10x + 8
( x - 4 ) ( 3x + 2 ) = 0
3x^2 - 10x - 8 = 0
Suy ra x = -2/3
x = 4
Vậy x = { -2/3 ; 4 }