a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right):\left(2+\frac{1}{6}-\frac{1}{4}\right)=\frac{7}{46}\)
\(\left(x-\frac{1}{12}\right):\left(2-\frac{1}{12}\right)=\frac{7}{46}\)
\(\left(x-\frac{1}{12}\right):\frac{23}{12}=\frac{7}{46}\)
\(x-\frac{1}{12}=\frac{7}{46}.\frac{23}{12}\)
\(x-\frac{1}{12}=\frac{7}{24}\)
\(x=\frac{7}{24}+\frac{1}{12}\)
\(x=\frac{3}{8}\)
Vậy \(x=\frac{3}{8}\)
b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{7}{10}:\frac{7}{12}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{7}{10}.\frac{12}{7}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{6}{5}\)
\(\frac{13}{21}+x=\frac{13}{15}-\frac{6}{5}\)
\(\frac{13}{21}+x=\frac{-1}{3}\)
\(x=\frac{-1}{3}-\frac{13}{21}\)
\(x=\frac{-20}{21}\)
Vậy \(x=\frac{-20}{21}\)