\(\left|5x\right|-3x=2\)
\(\text{⇒}\left|5x\right|=3x+2\)
TH1:
\(5x=3x+2\) \(\left(x\ge0\right)\)
\(\text{⇒}5x-3x=2\)
\(\text{⇒}2x=2\)
\(\text{⇒}x=\dfrac{2}{2}\)
\(\text{⇒}x=1\left(tm\right)\)
TH2:
\(-5x=3x+2\) (x < 0)
\(\text{⇒}-5x-3x=2\)
\(\text{⇒}-8x=2\)
\(\text{⇒}x=-\dfrac{1}{4}\left(tm\right)\)
Xét \(x>0\)
\(5x-3x=2\)
\(\left(5-3\right)x=2\)
\(2x=2\)
\(x=1\)
Xét \(x< 0\)
\(\left(-5x\right)-3x=2\)
\(\left(-5-3\right)x=2\)
\(-8x=2\)
\(x=-\dfrac{2}{8}=-\dfrac{1}{4}\)
Vậy: \(\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{4}\end{matrix}\right.\)