1: =>3x(x2-16-2)=0
=>x(x2-18)=0
hay \(x\in\left\{0;3\sqrt{2};-3\sqrt{2}\right\}\)
3: =>\(84x^2-7x-2-24x=0\)
\(\Leftrightarrow84x^2-29x-2=0\)
hay \(x\in\left\{\dfrac{29-\sqrt{1513}}{168};\dfrac{29+\sqrt{1513}}{168}\right\}\)
1: =>3x(x2-16-2)=0
=>x(x2-18)=0
hay \(x\in\left\{0;3\sqrt{2};-3\sqrt{2}\right\}\)
3: =>\(84x^2-7x-2-24x=0\)
\(\Leftrightarrow84x^2-29x-2=0\)
hay \(x\in\left\{\dfrac{29-\sqrt{1513}}{168};\dfrac{29+\sqrt{1513}}{168}\right\}\)
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
x^2-5x+6
x^2-7x+12
x^2+x-12
x^2-9x+20
2x^2-3x-2
4x^2-7x-2
4x^2+15x+9
Tìm x:
1. ( 4x4 + 3x3 ) : ( -x3) + ( 15x2 + 6x ) : 3x = 0
2. ( 25x2 - 10x) : ( -5x) - 3( x-2) = 4
3. ( 42x3 - 12x ) : ( -6x) + 7x ( x+2) = 8
Giải các phương trình:
a) 3 x − 3 4 − 2 − 4 x = 0 ;
b) x 2 − 4 x + 7 − 12 x + 7 = 0 ;
c) 4 − 4 + x + x x 2 − 16 = 0 ;
d) x 2 + 6 x − 7 = 0 .
Bài 3: Tìm x
a) (2x+3)2−4x2=10
b) (x+1)2−(2+x)(x−2)=0
c) (5x−1)(1+5x)=25x2−7x+15
d) (4−x)2−16=0
e) 3x2−12x=0
g) x2−8x−3x+24=0
Tìm x biết:
a.2x3 – 5x2 = 5-2x
b.x(2x-7) – 4x + 14 = 0
c.(12x3 + 24x2 : 6x2 – (2x2 – 3x) : 1/3 x
Tìm x
a,(x2-4x+16)+(x+4)-x*(x+1)*(x+2)+3x2=0
b,(8x+2)*(1-3x)+(6x-1)*(4x-10)=-50
c,(x2+2x+4)*(2-x)+x*(x-3*(x+4))-x2+24=0
d,(x/2+3)*(5-6x)+(12x-2)*(x/4+3)=0
Giải phương trình:
a.4x - 3 = 2(x - 3)
b.5x2 + x = 0
c. (3x - 5)(x + 7) = 0
d. 2/(x-3) - 3(x+3) = (7x-1)/(x2-9)
e.(12x - 1)(6x - 1)(4x - 1)(3x - 1) = 330
Giải các phương trình sau:
g/ x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
h/ (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
i/ (x + 2)(3 – 4x) = x2 + 4x + 4
k/ x(2x – 7) – 4x + 14 = 0
m/ x2 + 6x – 16 = 0
n/ 2x2 + 5x – 3 = 0
(12x^2+24x^4-16x^3+4x^2) : 4
(x^4-3x^3+3x^2-x) : (x-1)