Gọi d là ƯCLN của 7n + 10 và 5n + 7
=> 7n + 10 và 5n + 7 chia hết cho d
<=> 5.(7n + 10) và 7.(5n + 7) chia hết cho d
<=> 35n + 50 và 35n + 49 chai hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
= > 1 chia hết d => d = 1
Vậy ƯCLN của 7n + 10 và 5n + 7 là 1
a,Gọi ucln của 7n+10 và 5n+7 là d (d thuộc n)
ta có: 7n+10-(5n+7)chia hết cho d
->5.(7n+10)-7.(5n+7)chia hết cho d
35n+50-35n-49chia hết cho d
hay 0+1 chia hết cho d
->d thuộc u(1)->7n+10 và 5n+7 là số nguyên tố
ucln của 2 số là 1
b,LÀM TƯƠNG TỰ NHƯ CÂU A