Tìm trên Oz điểm M cách đều điểm A 2 ; 3 ; 4 và mặt phẳng P : 2 x + 3 y + z - 17 = 0
A. M(0;0;-3)
B. M(0;0;3)
C. M(0;0;-4)
D. M(0;0;4)
Trong không gian với hệ tọa độ Oxyz tìm trên trục Oz điểm M cách đều điểm A 2 ; 3 ; 4 và mặt phẳng α : 2 x + 3 y + z - 17 = 0
A. M(0;0;0)
B. M(0;0;1)
C. M(0;0;3)
D. M(0;0;2)
Cho P : 2 x - y - z + 4 = 0 và A(2;0;1), B(0;-2;3). Gọi M là điểm có tọa độ nguyên thuộc mặt phẳng (P) sao cho MA=MB=3. Tìm tọa độ của điểm M
A. 6 7 ; - 4 7 ; 12 7
B. (0;-1;5)
C. (0;1;-3)
D. (0;1;3)
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;0;-1) , mặt phẳng (P): 2x+y-z-2=0 và mặt phẳng (Q): x-3y-4=0. Gọi M là một điểm nằm trên (P) và N là điểm nằm trên (Q) sao cho A là trung điểm của MN. Khi M chạy trên mặt phẳng (P) thì quỹ tích điểm N là đường thẳng d có phương trình tương ứng là




Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng (d) là giao tuyến của 2 mặt phẳng (P): 2 x - 2 y - z + 1 = 0 , (Q): x + 2 y - 2 z - 4 = 0 . Tìm m để (S) cắt (d) tại 2 điểm M, N sao cho độ dài MN = 8.
A. m = 2
B. m = -12
C. m = 12
D. m = -2
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 + 4 x - 6 y + m = 0 và đường thẳng (d) là giao tuyến của 2 mặt phẳng (P): 2 x - 2 y - z + 1 = 0 , (Q): x + 2 y - 2 z - 4 = 0 . Tìm m để (S) cắt (d) tại 2 điểm M, N sao cho độ dài MN = 8.
A. m = 2
B. m = -12
C. m = 12
D. m = -2
Trong không gian Oxyz cho mặt phẳng (P): 2x + 2y - z + 4 = 0 và các điểm A(2;1;2); B(3;-2;2). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA; MB luôn tạo với mặt phẳng (P) các góc bằng nhau. Biết rằng điểm M thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
A. 10 3 ; - 3 ; 14 3
B. 17 21 ; - 71 21 ; 17 21
C. 74 27 ; - 97 27 ; 62 27
D. 32 9 ; - 49 9 ; 2 9
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-3) và mặt phẳng (P): 2x+2y-z+0=0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x+4y-4z+5=0 cắt mặt phẳng (P) tại B. Điểm M nằm trong mặt phẳng (P) sao cho M luôn nhìn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
A. M B = 41 2
B. M B = 5 2
C. M B = 5
D. M B = 41