\(\sqrt[3]{2x-3}+\sqrt[3]{x-2}=1\)
\(pt\Leftrightarrow\sqrt[3]{2x-3}-1+\sqrt[3]{x-2}=0\)
\(\Leftrightarrow\frac{2x-3-1}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\sqrt[3]{x-2}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{x-2}{\sqrt[3]{\left(x-2\right)^2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{1}{\sqrt[3]{\left(x-2\right)^2}}\right)=0\)
Dễ thấY :\(\frac{2}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{1}{\sqrt[3]{\left(x-2\right)^2}}>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\). Tổng lập phương các nghiệm là \(2^3=8\)
Tôi suy nghĩ ra cách này dễ hơn:
Đặt \(u=\sqrt[3]{2x-3};v=\sqrt[3]{x-2}\)
Ta có: u + v = 1 và u3 - 2v3 = 1
Suy ra: u3 - 2(1 - u)3 = 1. Giải được u = 1
Suy ra \(\sqrt[3]{2x-3}=1\)
Giải được x = 2.