Tìm tất cả các số nguyên dương x, y, z thỏa mãn \(3^x+2^y=1+2^z\)
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm x,y,z là 3 số nguyên dương thoả mãn 2(y+z)=x(yz-1)
Tìm tất cả các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn phương trình:
\(x^6+y^6+15y^4+z^3+75y^2=3x^2y^2z+15x^2z-125\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
tìm tất cả các bộ số nguyên dương (x,y,z) thoản mãn \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố