*Sử dụng phương pháp chặn (hai đầu):
\(x\left(x^2+2x+4\right)=y^3-3\left(1\right)\)
\(\Leftrightarrow2x^2+4x+3=y^3-x^3\)
Ta có \(2x^2+4x+3=2\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3-x^3>0\Rightarrow y^3>x^3\left(2\right)\)
Lại có: \(\left(x+2\right)^3-y^3=\left(x^3+6x^2+12x+8\right)-\left(x^3+2x^2+4x+3\right)=4x^2+8x+5=4\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3< \left(x+2\right)^3\left(3\right)\)
Từ (2), (3) suy ra \(x^3< y^3< \left(x+2\right)^3\Rightarrow y^3=\left(x+1\right)^3\).
Thay vào (1) ta được:
\(x^3+2x^2+4x=\left(x+1\right)^3-3\)
\(\Leftrightarrow x^3+2x^2+4x=x^3+3x^2+3x+1-3\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Với \(x=2\Rightarrow y=3\)
Với \(x=-1\Rightarrow y=0\)
Vậy các nghiệm nguyên của pt (1) là \(\left(x;y\right)=\left(2;3\right),\left(-1;0\right)\)