Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số  y = 2 x + 3 m x 2 + 1  có hai tiệm cận ngang

A. m > 0

B. m < 0

C. m = 0

D. Không tồn tại m

Cao Minh Tâm
13 tháng 3 2018 lúc 4:48

Đáp án A.

Ta có  2 x + 3 m x 2 + 1 = 2 x + 3 x 1 m + 1 x 2 ⇒ lim x → − ∞ 2 x + 3 x = lim x → − ∞ 2 x + 3 − x = − 2  

lim x → + ∞ 2 x + 3 x = lim x → + ∞ 2 x + 3 x = 2 . Từ đó, suy ra các giới hạn  lim x → − ∞ 2 x + 3 m x 2 + 1 ; lim x → + ∞ 2 x + 3 m x 2 + 1  tồn tại và hữu hạn khi và chỉ khi các giới hạn  lim x → − ∞ m + 1 x 2 ;   lim x → + ∞ m + 1 x 2  tồn tại, hữu hạn và khác không. Do  lim x → ± ∞ 1 x 2 = 0  các giới hạn vừa nêu tồn tại, hữu hạn và khác 0 khi và chỉ khi m > 0.

Chú ý và Lỗi sai

* Định nghĩa: Cho hàm số  y = f x  xác định trên  a ; + ∞ ;   − ∞ ; b ;   − ∞ ; + ∞

Nếu  lim x → + ∞ f x = y 0 lim x → − ∞ f x = y 0  thì  y = y 0  là tiệm cận ngang.

Từ định nghĩa tiệm cận ngang của đồ thị hàm số suy ra các giá trị m cần tìm là các giá trị sao cho tồn tại giới hạn của hàm số đã cho khi x tiến ra  + ∞  và khi x tiến ra  - ∞ , đồng thời hai giới hạn đó phải khác nhau.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết