Tìm tất cả các giá trị thực của tham số m để hàm số y = − x 2 + (m−1)x + 2 nghịch biến trên khoảng (1; 2).
A. m < 5
B. m > 5
C. m < 3
D. m > 3
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 m + 2 x − m xác định trên (-1; 0)
A. m > 0 m < − 1
B. m ≤ − 1
C. m ≥ 0 m ≤ − 1
D. m ≥ 0
Tìm tất cả các giá trị thực của tham số mm để hàm số y = x − m + 2 x − m − 1 xác định trên (0; + ∞ ).
A. m ≤ 0
B. m ≥ 1
C. m ≤ 1
D. m ≤ - 1
tìm tất cả các giá trị của tham số m để hàm số y=\(\sqrt{x-m+1}+\dfrac{2x}{\sqrt{-x+2m}}\) xác định trên khoảng(3;4)
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x x − m + 2 − 1 xác định trên (0;1).
A. m ∈ ( − ∞ ; 3 2 ] ∪ { 2 }
B. m ∈ ( − ∞ ; - 1 ] ∪ { 2 }
C. m ∈ ( − ∞ ; 1 ] ∪ { 3 }
D. m ∈ ( − ∞ ; 1 ] ∪ { 2 }
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2}-1}\)xác định trên (0;1)
1/ tìm tham số thực m để tồn tại x thỏa mãn f(x) = m^2x + 3 - ( mx + 4 ) âm. 2/ tìm tất cả các giá trị của m để f (x) = m( x-m ) - ( x - 1 ) không âm với mọi x thuộc ( - vô cực , m+1)
Tìm tất cả các giá trị thực của tham số m để hàm số y = 2 x + 1 x 2 − 6 x + m − 2 xác định trên R.
A. m ≥ 11
B. m > 11
C. m < 11
D. m ≤ 11
Tìm tất cả các giá trị của tham số m để tập xác định của hàm số
y = m x - 2 - x + 1 là một đoạn trên trục số.
A. m<-2
B. m>-2
C. m>2
D. m<2