Cho hàm số y = x - 2 x 2 + m x + m 2 - 3 Tất cả giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt là
A. -2 < m < -1
B. - 2 < m < 2 m ≠ - 1
C. -1 < m < 2
D. - 1 < m < 2 m ≠ - 1
Cho hàm số y = m x 3 - x 2 - 2 x + 8 m có đồ thị (C) . Tìm tất cả giá trị tham số m để đồ thị (C) cắt trục hoành tại ba điểm phân biệt.
A. m ∈ - 1 6 ; 1 2
B. m ∈ - 1 6 ; 1 2
C. m ∈ - 1 6 ; 1 2 / 0
D. m ∈ - ∞ ; 1 2 / 0
Cho hàm số y = 1 3 x 3 - m x 2 - x + m + 2 3 có đồ thị (C) . Tất cả các giá trị của tham số m để (C) cắt trục Ox tại ba điểm phân biệt có hoành độ x1; x2; x3 thỏa x 1 2 + x 2 2 + x 3 2 > 15 là
A. m>1 hoặc m<-1
B. m< -1
C. m>0
D. m>1
Cho hàm số y = x 3 - m x + 1 (với m là tham số). Tìm tất cả các giá trị của m để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt.
A. m ≤ 3 2 3 2
B. m > 3 2 3 2
C. m < 3 2 3 2
D. m ≥ 3 2 3 2
Cho hàm số y = - x 4 + 2 x 2 + m . Tất cả giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ít nhất ba điểm phân biệt là
A. 0 < m < 1
B. - 1 < m ≤ 0
C. -1 < m < 0
D. - 1 ≤ m < 0
Cho hàm số f ( x ) = x 3 - 3 x 2 . Tính tổng tất cả các giá trị nguyên của m để đồ thị hàm số g ( x ) = f ( x ) + m cắt trục hoành tại 4 điểm phân biệt.
A. 3
B. 10
C. 4
D. 6
Cho hàm số y = f ( x ) liên tục trên R và có đồ thị như hình bên dưới

Biết rằng trục hoành là tiệm cận ngang của đồ thị. Tìm tất cả các giá trị thực của tham số m để phương trình f x = 4 m + 2 log 4 2 có hai nghiệm dương phân biệt
![]()
![]()
![]()
![]()
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.![]()
B.![]()
C.![]()
D. ![]()
Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x 3 + ( m + 2 ) x 2 + ( m 2 m - 3 ) x - m 2 cắt trục hoành tại ba điểm phân biệt?
A. 3
B.. 4
C. 1
D. 2