Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Thanh Nhân

Tìm tất cả các cặp (x; y) nguyên thỏa mãn   \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=5\)

✰๖ۣۜŠɦαɗøω✰
3 tháng 4 2020 lúc 13:53

                                                                     Giải

5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )

    = [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2  ) 

    = ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )

    = A2  - 4 ( A - 2 )

    <=> A2 - 4.A + 3 = 0

    <=>   \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)

Lưu ý : đặt : A = xy - x - 2y + 4 

TH1 : xy - x - 2.y + 4  = 3 

<=> xy - x - 2y + 1        = 0 

<=> x.( y  - 1 ) - 2.(y-1 ) = 1

<=> ( x - 2 )  (  y - 1 ) = 1 

Ta có bảng : 

x-21-1
 y - 1 1-1
3-1
y20

TH2 : xy - x - 2y + 4 = 1 

<=> ( x- 2 ) . ( y -1 ) =-1 

x-2 -11
y - 11-1
 x   -13
  20
Khách vãng lai đã xóa

Các câu hỏi tương tự
Long
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
khôi lê nguyễn kim
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Phúc Long Nguyễn
Xem chi tiết
Minh Thúy
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết