Gọi S là tập nghiệm của phương trình log 5 ( x + 1 ) + log 5 ( x - 3 ) = 1 Tìm S
A. S = - 2 ; 4
B. S = - 1 + 13 2 ; - 1 - 13 2
C. S = 4
D. S = - 1 + 13 2
Tìm tập nghiệm S của phương trình l o g 2 ( x - 1 ) + l o g 2 ( x + 1 ) = 3
A . S = - 3 ; 3
B . S = 10
C . S = 3
D . S = - 10 ; 10
Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Tìm tập nghiệm S của bất phương trình l o g 1 2 ( x + 2 ) - l o g 1 2 x > l o g 2 ( x 2 - x ) - 1
A. S = 2 ; + ∞
B. S = 1 ; 2
C. S = 0 ; 2
D. S = ( 1 ; 2 ]
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình log m 2 x 2 + x + 3 ≤ log m 3 x 2 − x . Biết rằng x = 1 là một nghiệm của bất phương trình
A. S = − 2 ; 0 ∪ 1 3 ; 3
B. S = − 1 ; 0 ∪ 1 3 ; 2
C. S = − 1 ; 0 ∪ 1 3 ; 3
D. S = − 1 ; 0 ∪ 1 ; 3
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 4 x - 3 . 2 x + 2 - m = 0 có nghiệm thuộc khoảng (0;2).
A. (0;+∞)
B. [-1/4;8)
C. [-1/4;6)
D. [ -1/4;2)
Cho hàm số y = x 3 - 3 x 2 + m x - m + 1 có đồ thị (C) và điểm A(0;2) Gọi S là tập họp tất cả các giá trị nguyên của m để có ít nhất 2 tiếp tuyến của đồ thị (C) đi qua A . Tìm số phần tử của S.
A. 2
B. 3
C. 0.
D. 1.
Gọi S là tập nghiệm của phương trình 2 l o g 2 ( 2 x - 2 ) + l o g 2 ( x - 3 ) 2 = 2 . Tổng các phần tử của S bằng:
A. 6
B. 4 + 2
C. 2 + 2
D. 8 + 2
Tập nghiệm S của bất phương trình log 2 ( x - 1 ) < 3 là
A. (1;9)
B. (1;10)
C. (-∞;9)
D. (-∞;10)
Tìm tập nghiệm S của phương trình log 6 x 5 - x = 1
A. S={2;3}.
B. S={2;3;-1}.
C. S={2;-6}.
D. S={2;3;4}.