Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm tập hợp các điểm M trên mặt phẳng tọa độ biểu diễn các số phức w = 1 + i 3 z + 2 , trong đó z - 1 ≤ 2 .

A. Hình tròn tâm I( 3 ; 3 ) bán kính R = 4 .

B. Đường tròn tâm I( 3 ; 3 ) R = 8  bán kính  R = 4 .

C. Hình tròn tâm I( 3 ; 3 ) bán kính R = 8 . 

D. Đường tròn tâm I( 3 ; 3 ) bán kính  R = 8 .

Cao Minh Tâm
23 tháng 6 2017 lúc 4:54

Đáp án A.

Cách 1: w = 1 + i 3 z + 2 ⇔ z = w - 2 1 + i 3 . Từ đó

z - 1 ≤ 2 ⇔ w - 2 1 + i 3 - 1 ≤ 2 ⇔ w - 3 - i 3 ≤ 2 1 + i 3 ⇔ w - 3 + i 3 ≤ 4 .

 

Vậy tập hợp cần tìm là hình tròn tâm I( 3 ; 3 ) bán kính R = 4. Chọn đáp án A.

Cách 2: Gọi w = x + y i ; x , y ∈ ℝ . Khi đó ta có

w = 1 + i 3 z + 2 ⇔ x + y i = 1 + i 3 z + 2 ⇔ x - 2 + y i 1 + i 3 = z  

⇒ z - 1 = x - 2 + y i 1 + i 3 - 1 = x - 3 - y - 3 i 1 + i 3 ⇒ z - 1 = x - y 3 + i y - x 3 + 4 3 4  

z - 1 ≤ 2 ⇒ x - y 3 2 + y - x 3 + 4 3 2 ≤ 8 ⇒ x - 3 2 + y - 3 2 ≤ 16 .

Vậy tập hợp cần tìm là hình tròn tâm I( 3 ; 3 ) bán kính R = 4. Chọn đáp án A.

 

Bài toán tổng quát: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số w = α z + β  trong đó z là số phức tùy ý thỏa mãn z - z 0 ≤ R  ( z 0 , α ≢ 0 , β là những số phức cho trước, R là số thực dương cho trước).

Tương tự như lời giải trên, ta có tập hợp cần tìm là hình tròn có tâm là điểm biểu diễn số phức α z 0 + β , với bán kính bằng R α .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết