Do 5n + 1 chia hết cho 7 nên \(5n+1\in B\left(7\right)=\left\{7;14;21;28;35;...\right\}\) Ta có bảng sau:
5n +1 | 7 | 14 | 21 | 28 | 35 |
n | \(\frac{6}{5}\) (loại) | \(\frac{13}{5}\) (loại) | 4 | \(\frac{27}{5}\) (loại) | \(\frac{34}{5}\) (loại) |
Vậy ta tìm được 1 giá trị n là: 4
~ Học tốt nha bạn ~
\(5n+1=\left(5n-20\right)+21=5\left(n-4\right)+21\) chia hết cho 7
\(\Leftrightarrow\)\(5\left(n-4\right)⋮7\)
\(\Leftrightarrow\)\(n-4⋮7\)
Do đó \(n-4=7k\) \(\left(k\inℕ\right)\)
\(\Rightarrow\)\(n=7k+4\)
Vậy n có dạng \(7k+4\) thì \(5n+1⋮7\)
Chúc bạn học tốt ~