a: \(\Leftrightarrow\left(3x-1\right)^{10}\left[\left(3x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\left(3x-1\right)^{10}\cdot3x\cdot\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{3};0;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow\left(6-x\right)^{2003}\cdot\left(x-1\right)=0\)
hay \(x\in\left\{6;1\right\}\)
c: \(\Leftrightarrow5^x\cdot26=650\)
\(\Leftrightarrow5^x=25\)
hay x=2
a) \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)
\(\Rightarrow\left(3x-1\right)^{10}-\left(3x-1\right)^{20}=0\)
\(\Rightarrow\left(3x-1\right)^{10}\left[1-\left(3x-1\right)^{10}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^{10}=0\\1-\left(3x-1\right)^{10}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=0\end{matrix}\right.\end{matrix}\right.\)
b) Tương tự
c) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x+5^x.5^2=650\)
\(\Rightarrow5^x\left(1+25\right)=650\)
\(\Rightarrow5^x.26=650\)
\(\Rightarrow5^x=25\Rightarrow x=2\)
a: ⇔(3x−1)10[(3x−1)10−1]=0⇔(3x−1)10[(3x−1)10−1]=0
⇔(3x−1)10⋅3x⋅(3x−2)=0⇔(3x−1)10⋅3x⋅(3x−2)=0
hay