Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khiêm Nguyễn Gia

Tìm số tự nhiên \(n\) để \(D=n^5-n+2\) là số chính phương.

Lê Song Phương
2 tháng 8 2023 lúc 18:50

 Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

  Dễ thấy nếu \(5|n\)\(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)

 Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).

 Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.


Các câu hỏi tương tự
Dang Hoang Mai Han
Xem chi tiết
Trương Hồng Minh
Xem chi tiết
dinh thi tuyet hong
Xem chi tiết
Lê Phúc Thuận
Xem chi tiết
Thảo My
Xem chi tiết
N.T.M.D
Xem chi tiết
cr conan
Xem chi tiết
trung
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết