Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.
Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.
Tìm các dãy tỉ số bằng nhau:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{3}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
c) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x-y+z=(-15)
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=(-120)
Tìm các số nguyên x và y sao cho :
a) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
b) \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
Đề này dùng để cho các bạn lớp 7 tham khảo , không cần giải , bài nào không biết thì nói với mình
Câu 1: Tính
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2013}\right)\left(1-\frac{1}{2014}\right)\)
\(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Câu 2: Cho \(\frac{2x+2y-z}{z}=\frac{2x+2z-y}{y}=\frac{2z+2y-x}{x}\) (với x,y,z là các số hữu tỉ dương)
Tính giá trị của \(C=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Tìm các số nguyên x,y,z,t biết:
$\frac{27}{4}$274 =$\frac{-x}{3}$−x3 =$\frac{\left(z+3\right)^3}{-4}$(z+3)3−4 =$\frac{\left|t-2\right|}{8}$//t/−2/8
chú ý / là giá trị tuyệt đối
CHO x;y thuộc Z và x;y khác 0
thỏa mãn \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\left(x+y\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{2}{xy}=4\)
TÍNH E=x+y
Câu 1Tính giá trị biểu thức A biết
A=\(\frac{4+\frac{5}{6}-\frac{1}{9}}{10-\frac{7}{12}+\frac{1}{16}}-\frac{3-\frac{1}{5}+\frac{1}{3}-\frac{1}{9}}{9-\frac{3}{5}+1-\frac{1}{3}}\)
Câu 3 : Tìm x biết : 2016.x+x.\(\frac{1}{2016}\)-2016=\(\frac{1}{2016}\)
Câu 4 : Tìm tất cả các cặp số nguyên x,y biết rằng : (x-y).(y+3)2=9
Tìm các số x, y, z, t, k, sao cho ta có đẳng thức sau:
\(0,4+x-4\frac{1}{5}-2,7=3,75-x+y-2,25=\)
\(=2,5-3\frac{2}{5}+4,5-14,1=-0,7+z+t-8\frac{4}{5}=\)
\(=-10\frac{3}{4}-1,75-t-k=9,80+k-3,02+z.\)
tìm số nguyên x;y \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Cho 3 số dương x,y,z thỏa mãn \(x^2+y^2+z^2\le3\)
Tìm GTNN của P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)