a) Ta có 2n+8=2(n-3)+14
=> 14 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}
ta có bảng
n-3 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 | |
n | -11 | -4 | 1 | 2 | 4 | 5 | 10 | 17 |
Vậy n={-11;-4;-1;2;4;5;10;17}
b) Ta co 3n+11=3(n-5)-4
=> 4 chia hết chia hết cho n+5
n nguyên => n+5 nguyên
=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
vậy n={-9;-7;-6;-4;-3;-1}
a, \(2n+8⋮n-3\)
\(2\left(n-3\right)+14⋮n-3\)
\(\Rightarrow n-3\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
Vì n nguyên => tm
b, \(3n+11⋮n+5\)
\(3\left(n+5\right)-4⋮n+5\)
\(-4⋮n+5\)
\(\Rightarrow n+5\in\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 5 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -4 | -6 | -3 | -7 | -1 | -9 |
Vì n nguyên => tm