Cho f ( n ) = ( n 2 + n + 1 ) 2 ∀ n ∈ N * Đặt u n = f ( 1 ) . f ( 3 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . . . f ( 2 n ) .
Tìm số n nguyên dương nhỏ nhất sao cho u n thỏa mãn điều kiện log 2 u n + u n < - 10239 1024 .
A. n=23
B. n=29
C. n=21
D. n=33
Cho hàm số f ( x ) = e 1 + 1 x 2 + 1 ( x + 1 ) 2 , biết rằng f ( 1 ) . f ( 2 ) . f ( 3 ) . . . f ( 2017 ) = e m n với m, n là các số tự nhiên và m 2 tối giản. Tính m - n 2
A. m - n 2 = 2018
B. m - n 2 = 1
C. m - n 2 = -2018
D. m - n 2 = -1
Cho hàm số f(x) có f ( 1 ) = 1 , f ( m + n ) = f ( m ) + f ( n ) + m n , ∀ m , n ∈ ℕ * . Giá trị của biểu thức T = log f ( 96 ) − f ( 69 ) − 241 2 là
A. 4
B. 3
C. 6
D. 9
Cho f(x) = 1^4 +2^4+.....+n^4. Tìm f(x) bậc 5 sao cho f(x+1) - f(x) = x^4
Cho hàm số f ( x ) = ln ( 1 - 4 ( 2 x - 1 ) 2 ) . Biết rằng f ( 2 ) + f ( 3 ) + . . . + f ( 2020 ) = ln a b , trong đó a b là phân số tối giản, a , b ∈ N * . Tính b -3a
A. -2
B. 3
C. -1
D. 1
Cho f(1) = 1; f(m + n) = f(m) + f( n) + m.n với các số nguyên dương m; n .Khi đó giá trị của biểu thức T = log f 2017 - f 2016 - 17 2 là
A. 3
B. 4
C. 6
D. 9
Cho hàm số f ( x ) = 1 2 log 2 ( 2 x 1 - x ) và hai số thực m, n thuộc khoảng (0; 1) sao cho m +n = 1. Tính f(m) + f(n).
A. 2
B. 0
C. 1
D. 1 2
Cho hàm số f ( x ) = 1 2 log 2 2 x 1 - x và hai số thực m, n thuộc khoảng (0;1) sao cho m + n = 1 . Tính f ( m ) + f ( n )
A. 2
B. 0
C. 1
D. 1 2
Gọi a là giá trị nhỏ nhất của f ( n ) = ( log 3 2 ) log 3 3 log 3 4 . . . log 3 n 9 n , với n ∈ N , n ⩾ 2 . Có bao nhiêu số n để f ( n ) = a ?
A. 2
B. Vô số.
C. 1.
D. 4