Để C là một số nguyên thì \(m^2+m+1\) là bình phương của một số tự nhiên.
Đặt \(m^2+m+1=k^2\left(k\in N\text{*}\right)\)
\(\Leftrightarrow m^2+m+1-k^2=0\) . Xét \(\Delta=1-4\left(1-k^2\right)=4k^2-3\)
Vì m là số nguyên nên \(4k^2-3\) là bình phương của một số nguyên lẻ.
Lại đặt \(4k^2-3=\left(2p+1\right)^2\Leftrightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3=1.3=\left(-1\right).\left(-3\right)=...\)
Xét các trường hợp được k = 1 thỏa mãn .
Vậy \(m^2+m+1=1\Leftrightarrow m\left(m+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}m=0\\m=-1\end{array}\right.\)