\(A=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\)
A nguyên khi \(\frac{3}{\sqrt{x}-2}\) nguyên
<=> \(\sqrt{x}+2\) là ước của 3
\(\Leftrightarrow\sqrt{x}+2\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-1;1;-3;-5\right\}\)
\(\Leftrightarrow x\in\left\{1;2;9;25\right\}\)
Vậy x=1 ; x= 9 ; x=25
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow3⋮\sqrt{x}-2\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;5;-1\right\}\)
\(\Rightarrow x\in\left\{9;1;25\right\}\)
\(A=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\)
A nguyên <=> \(\frac{3}{\sqrt{x}-2}\)
<=> \(\sqrt{x}-2\inƯ_3\)
<=>\(\sqrt{x}-2\in\left\{1;3;-1;-3\right\}\)
<=>\(\sqrt{x}\in\left\{3;5;1;-1\right\}\)
=> \(x\in\left\{5;25;1;1\right\}\)
Vậy \(x\in\left\{5;25;1\right\}\)
A = \(\frac{\sqrt{X}+1}{\sqrt{X}-2}\)
=\(\frac{\sqrt{X}-2+3}{\sqrt{X}-2}\)
=\(1+\frac{3}{\sqrt{X}-2}\)
A nhận giá trị nguyên \(\Leftrightarrow\)\(\frac{3}{\sqrt{x}-2}\)nhận giá trị nguyên
\(\Leftrightarrow\)\(\sqrt{x}-2\inƯ\left(3\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)
+) \(\sqrt{x}-2=1\Leftrightarrow x=9\)
+)\(\sqrt{x}-2=-1\Leftrightarrow x=1\)
+) \(\sqrt{x}-2=3\Leftrightarrow x=25\)
+)\(\sqrt{x}-2=-3\Leftrightarrow x=1\)
vậy x=1; x=25; x=9 thì A nhận giá trị nguyên
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)+3}{\sqrt{x}-2}=\sqrt{x}-2+\frac{3}{\sqrt{x}-2}\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\)
Liệt kê ra..