Cho hàm số f(n)= a n + 1 + b n + 2 + c n + 3 ( n ∈ N * ) với a, b, c là hằng số thỏa mãn a+b+c=0. Khẳng định nào sau đây đúng?
A. lim x → + ∞ f ( n ) = - 1
B. lim x → + ∞ f ( n ) = 1
C. lim x → + ∞ f ( n ) = 0
D. lim x → + ∞ f ( n ) = 2
Tìm số hạng chứa x5 trong khai triển \(\left(x-\dfrac{2}{x}\right)^{n^{ }}\) , biết n là số tự nhiên thỏa mãn \(C^3_n=\dfrac{4}{3}n+2C^2_n\)
A.144 B.134 C.115 D.141
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Cho dãy số ( u n ) thỏa mãn u n = u n - 1 + 6 , ∀ n ≥ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 .
A. 5
B. 4
C. 3
D. 7
Biết n là số nguyên dương thỏa mãn C n n - 1 + C n n - 2 = 78 , số hạng chứa x 8 trong khai triển ( x 3 - 2 x ) n là
A.-10176 x 8
B.-101376
C.-112640
D.101376 x 8
Biết n là số nguyên dương thỏa mãn C n n - 1 - C n n - 2 = 78 Số hạng chứa x 4 trong khai triển x 2 - 2 x 2 n là
![]()
![]()
![]()
![]()