Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Tất Hưng

Tìm số hữu tỷ X sao cho X2+X+6 là một số chính phương

 

l҉o҉n҉g҉ d҉z҉
6 tháng 10 2020 lúc 12:27

ĐK : x ∈ Q

Đặt x2 + x + 6 = k2 ( k ∈ N )

=> 4( x2 + x + 6 ) = 4k2

=> 4x2 + 4x + 24 = 4k2

=> ( 4x2 + 4x + 1 ) + 23 = 4k2

=> ( 2x + 1 )2 + 23 = 4k2

=> 4k2 - ( 2x + 1 )2 - 23 = 0

=> ( 2k )2 - ( 2x + 1 )2 = 23

=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23

Xét các trường hợp : 

1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=6\end{cases}}\)( tm )

2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\)( tm )

3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}}\)( tm )

4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}}\)( tm )

=> x ∈ { 5 ; -6 } thì x2 + x + 6 là một số chính phương

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 10 2020 lúc 12:28

mình nhầm ĐK của k ; k ∈ Z nhé :v 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 10 2020 lúc 12:35

thôi cho mình sửa lại cả bài ._. làm ăn chán quá :v 

x ∈ Q

Đặt x2 + x + 6 = k2 ( k ∈ N )

=> 4( x2 + x + 6 ) = 4k2

=> 4x2 + 4x + 24 = 4k2

=> ( 4x2 + 4x + 1 ) + 23 = 4k2

=> ( 2x + 1 )2 + 23 = 4k2

=> 4k2 - ( 2x + 1 )2 - 23 = 0

=> ( 2k )2 - ( 2x + 1 )2 = 23

=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23

Xét các trường hợp :

1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\k=6\end{cases}\left(tm\right)}\)

2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\left(ktm\right)\)

3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}\left(tm\right)}\)

4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}\left(ktm\right)}\)

=> x ∈ { -6 ; 5 } thì x2 + x + 6 là một SCP

Lần đầu làm dạng này nên hơi nhiều thiếu xót :<

Khách vãng lai đã xóa
Nguyễn Minh Đăng
6 tháng 10 2020 lúc 16:44

Vì \(x^2+x+6\) là 1 số chính phương nên đặt:

\(x^2+x+6=a^2\left(a\inℤ\right)\)

\(\Leftrightarrow4x^2+4x+24=4a^2\)

\(\Leftrightarrow\left(4x^2+4x+1\right)+23=4a^2\)

\(\Leftrightarrow\left(2x+1\right)^2-4a^2=-23\)

\(\Leftrightarrow\left(2x+1-2a\right)\left(2x+1+2a\right)=-23=1.\left(-23\right)=\left(-1\right).23\)

Ta xét các TH sau:

+ Nếu: \(\hept{\begin{cases}2x+1-2a=1\\2x+1+2a=-23\end{cases}}\Leftrightarrow4x+2=-22\Rightarrow x=-6\Rightarrow a=-6\)(thỏa mãn)

+ Nếu: \(\hept{\begin{cases}2x+1-2a=-23\\2x+1+2a=1\end{cases}}\Leftrightarrow4x+2=-22\Rightarrow x=-6\Rightarrow a=6\) (thỏa mãn)

+ Nếu: \(\hept{\begin{cases}2x+1-2a=-1\\2x+1+2a=23\end{cases}}\Leftrightarrow4x+2=22\Rightarrow x=5\Rightarrow a=6\) (thỏa mãn)

+ Nếu: \(\hept{\begin{cases}2x+1-2a=23\\2x+1+2a=-1\end{cases}}\Leftrightarrow4x+2=22\Rightarrow x=5\Rightarrow a=-6\) (thỏa mãn)

Vậy \(x\in\left\{5;-6\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
bi bi
Xem chi tiết
Phan Phú Phat
Xem chi tiết
trinh thi thuy
Xem chi tiết
Nhok_Lạnh_Lùng
Xem chi tiết
Nguyễn Đức Huy
Xem chi tiết
Phạm Minh Hải
Xem chi tiết
Soorii_eun
Xem chi tiết
Phượng Hoàng Lửa
Xem chi tiết
Phượng Hoàng Lửa
Xem chi tiết