Ta chứng minh \(2^{3n+2}\equiv4\left(mod7\right)\) với mọi \(n\inℕ\).
Với \(n=0\) thì \(2^{3n+2}\equiv4\left(mod7\right)\), luôn đúng.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(2^{3k+2}\equiv4\left(mod7\right)\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy, ta có \(2^{3\left(k+1\right)+2}=2^{3k+5}=8.2^{3k+2}\). Do \(2^{3k+2}\equiv4\left(mod7\right)\) nên đặt \(2^{3k+2}=7a+4\left(a\inℕ\right)\). Từ đó \(2^{3\left(k+1\right)+2}=8.2^{3k+2}=8\left(7a+4\right)=56a+32\). Do \(56a\equiv0\left(mo\text{d}7\right)\) và \(32\equiv4\left(mod7\right)\), suy ra \(56a+32\equiv4\left(mod7\right)\). Do vậy, \(2^{3\left(k+1\right)+2}\equiv4\left(mod7\right)\), vậy khẳng định đúng với \(n=k+1\) \(\Rightarrow2^{3n+2}\equiv4\left(mod7\right),\forall n\inℕ\). Lại có \(2015\equiv-1\left(mod7\right)\) nên \(2^{3n+2}+2015\equiv3\left(mod7\right),\forall n\inℕ\).