a: \(f\left(x\right)=\dfrac{3}{x}-5x\)
=>\(F\left(x\right)=\int\left(\dfrac{3}{x}-5x\right)dx=3ln\left|x\right|-5\cdot\dfrac{1}{2}x^2+C\)
=>\(F\left(x\right)=3\cdot ln\left|x\right|-\dfrac{5}{2}x^2+C\)
F(e)=-1
=>\(3\cdot ln\left|e\right|-\dfrac{5}{2}e^2+C=-1\)
=>\(C=-1-3\cdot ln\left|e\right|+\dfrac{5}{2}e^2=-4+\dfrac{5}{2}e^2\)
=>\(F\left(x\right)=3ln\left|x\right|-\dfrac{5}{2}x^2-4+\dfrac{5}{2}e^2\)
b: \(f\left(x\right)=\dfrac{1}{x}-2x\)
=>\(F\left(x\right)=\int\left(\dfrac{1}{x}-2x\right)dx=ln\left|x\right|-2\cdot\dfrac{1}{2}x^2+C=ln\left|x\right|-x^2+C\)
F(e)=1
=>\(ln\left|e\right|-e^2+C=1\)
=>\(C=e^2\)
=>F(x)=ln|x|-x2+e2