a: \(f\left(x\right)=5^{2x}\cdot2^x=50^x\)
=>\(F\left(x\right)=\int50^xdx=\dfrac{50^x}{ln50}+C\)
F(0)=13
=>\(\dfrac{50^0}{ln50}+C=13\)
=>\(C=13-\dfrac{1}{ln50}\)
=>\(F\left(x\right)=\dfrac{50^x}{ln50}+13-\dfrac{1}{ln50}\)
b: \(f\left(x\right)=3^x\cdot2^{2x}=3^x\cdot4^x=12^x\)
=>\(F\left(x\right)=\int f\left(x\right).dx=\int12^xdx=\dfrac{12^x}{ln12}+C\)
F(0)=12
=>\(\dfrac{12^0}{ln12}+C=12\)
=>\(C=12-\dfrac{1}{ln12}\)
=>\(F\left(x\right)=\dfrac{12^x}{ln12}+12-\dfrac{1}{ln12}\)





