Đặt A = x4 - 9x3 + 9x2 + 41x - 42 = (x4 - 8x3 +x2 + 42x) - (x3 - 8x2 + x + 42) = (x-1)(x3 - 8x2 + x + 42) = (x-1)[(x3 - 10x2 + 21x) + (x2 - 10x + 21)] = (x-1)(x+2)(x2 - 10x + 21) = (x-1)(x+2)[(x2 - 3x) - (7x - 21)]=(x-1)(x-2)(x-3)(x-7)
\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
\(\orbr{\begin{cases}x-3=0\\x-7=0\end{cases}}\) <=>\(\orbr{\begin{cases}x=3\\x=7\end{cases}}\)
Vậy S = {1;2;3;7}