Bài 9: Nghiệm của đa thức một biến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lam caoluongmoc

Tìm nghiệm chủa các đa thức sau đây:

a, A(x)=4x-1

b,B(x)=4x-1-2x-3

c,C(x)=(4x-1).(2x-3)

d,D(x)=x2-1

e,E(x)=x2-4x

f,(F(x)=4x-8x2

Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 9:51

a) Đặt A(x)=0

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow4x=1\)

hay \(x=\frac{1}{4}\)

Vậy: \(x=\frac{1}{4}\) là nghiệm của đa thức A(x)=4x-1

b) Đặt B(x)=0

\(\Leftrightarrow4x-1-2x-3=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2 là nghiệm của đa thức B(x)=4x-1-2x-3

c) Đặt C(x)=0

\(\Leftrightarrow\left(4x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{3}{2}\right\}\) là nghiệm của đa thức C(x)=(4x-1)(2x-3)

d) Đặt D(x)=0

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\)

hay \(x=\pm1\)

Vậy: \(x=\pm1\) là nghiệm của đa thức \(D\left(x\right)=x^2-1\)

e) Đặt E(x)=0

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\) là nghiệm của đa thức \(E\left(x\right)=x^2-4x\)

f) Đặt F(x)=0

\(\Leftrightarrow4x-8x^2=0\)

\(\Leftrightarrow4x\left(1-2x\right)=0\)

\(4\ne0\)

nên \(\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\) là nghiệm của đa thức \(F\left(x\right)=4x-8x^2\)


Các câu hỏi tương tự
Năng Cộng Nguyễn
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
Lê Lệ Quyên
Xem chi tiết
Năng Cộng Nguyễn
Xem chi tiết
hoàng thanh trúc
Xem chi tiết
33- Bảo Thy
Xem chi tiết
Anh nguyen thi kim
Xem chi tiết
Thanh Nhàn Đào Thị
Xem chi tiết
Trâm Bùi
Xem chi tiết