Cao Chi Hieu
Số chính phương chia cho 4 chỉ dư 0 hoặc 1, số chính phương chia 4 dư 1 là số chính phương lẻ.
Do 2 là số chẵn => 2^n là số chắn
=> 2^n + 5 là số lẻ.
Đặt 2^n + 5 = a² (a là số tự nhiên) => a là số lẻ ( a² chắc chắn > 2^n)
=> a² chia 4 dư 1 => 3^n + 4 chia 4 dư 1.
+ Với n lẻ => 2^n + 5
= 3^n + 1 + 3
= 3^n + 1^n + 3
= (3 + 1)( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3
= 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3
= Do 4 chia hết cho 4
=> 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) chia hết cho 4
=> 4( 3^(n - 1) - 3^(n - 2) + ... + 1 ) + 3 chia 4 dư 3
=> 3^n + 4 chia 4 dư 3
a² chia 4 dư 3 nhưng số chính phương chia cho 4 không dư 3
=> không tồn tại số tự nhiên n lẻ để 3^n + 4 là số chính phương (*)
+ Với n chẵn => n = 2k (k là số tự nhiên)
=> 3^n + 4 = a²
<=> 3^(2k) + 4 = a²
<=> (3^k)² + 4 = a²
<=> a² - (3^k)² = 4
<=> (a + 3^k)(a - 3^k) = 4
=> a + 3^k và a - 3^k là các ước tự nhiên của 4
Ta có ước tự nhiên của 4 là các số: 1;2;4 Kết hợp với điều kiện a + 3^k > a - 3^k => ta có:
a + 3^k = 4 (1) và a - 3^k = 1 (2)
Cộng vế với vế của (1) và (2) ta được: (a + 3^k) + (a - 3^k) = 4 + 1
<=> a + 3^k + a - 3^k = 5
<=> 2a = 5
=> a = 2,5 loại vì không thỏa mãn điều kiện a là số tự nhiên
=> Không có giá trị n chẵn nào làm 3^n + 4 là số chính phương (*)(*)
Từ (*) và (*)(*) => Không có giá trị nào của n để 3^n + 4 là số chính phương.