Điểm E(4;5;5), mặt phẳng (P): x-2y+2z+6=0 và đường thẳng d : x + 1 2 = y - 3 - 1 = z - 2 1 . Tìm tọa độ điểm M có hoành độ nhỏ hơn 2 nằm trên đường thẳng d có khoảng cách từ M tới mặt phẳng (P) bằng EM.
Cho đường thẳng d : x + 1 3 = y - 2 2 = z - 1 - 2
và mặt phẳng (P): 2x - y + 2z + 13 = 0. Khoảng cách từ d tới mặt phẳng (P) bằng
A. 11 3
B. 3 11
C. 15
D. 5
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?
A . d = - 3 3
B . d = 3
C . d = 1 3
D . d = 1 3
Tìm điểm M thuộc tia Ox sao cho khoảng cách từ M tới mặt phẳng (P) bằng 3 với P : 2 + x + y + z = 0 .
Trong không gian Oxyz, cho hai mặt phẳng (P): x+2y+2z-10=0 và (Q): x+2y+2z-3=0. Điểm M là giao của mặt phẳng (P) với trục Oz. Khoảng cách từ M tới mặt phẳng (Q) bằng
A. 8 3
B. 7 3
C. 3
D. 4 3
Trong không gian với hệ trục Oxyz, cho hai điểm M (0;-1;2), N (-1; 1; 3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K (0;0;2) đến mặt phẳng (P) đạt giá trị nhỏ nhất. Tìm tọa độ véctơ pháp tuyến của mặt phẳng (P).
A . n → = 1 ; - 1 ; 1
B . n → = 1 ; 1 ; - 1
C . n → = 2 ; - 1 ; 1
D . n → = 2 ; 1 ; - 1
Trong không gian Oxyz, cho điểm A(1 ;-2 ;3) và mặt phẳng (P) có phương trình x + 2y - 2z + m = 0. Tìm các giá trị của m, biết rằng khoảng cách từ A đến mặt phẳng (P) bằng 1
A. m=12
B. m=18
C. m=18 hoặc m=0
D. m=12 hoặc m=6
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;-1;2) và N(-1;1;3). Một mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K(0;0;2) đến mặt phẳng (P) đạt giá trị lớn nhất. Tìm tọa độ véctơ pháp tuyến n → của mặt phẳng
A. n → =(1;-1;1)
B. n → =(1;1;-1)
C. n → =(2;-1;1)
D. n → =(2;1;-1)
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x-2y+z+14=0. Gọi M ( a ; b ; c ) là điểm thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất. Tính T = a + b + c .