Tìm một đa thức có dạng: \(ax^4+bx^3+cx^2+dx+e\) \(\left(a\ne0\right)\) và các hệ số nguyên và nhận nghiệm là \(x=1+\sqrt{2}-\sqrt{3}\)
Cho a=\(\frac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) giả sử đa thức f(x) =\(3x^6-4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)tính f(a)
Giúp mình với ! Cần gấp lắm!!!
Tìm đa thức với hệ số nguyên P(x) có bậc nhỏ nhất có một nghiệm :
x0 =\(\sqrt[3]{2}+\sqrt{2}\)
Đa thức trên có nghiệm hữu tỉ không? tại sao?
Tìm đa thức với hệ số nguyên nhận x= \(\sqrt{2}\)+ \(\sqrt[2]{3}\)là nghiệm
Cho đa thức: f(x) = x2 + bx + c.Biết b,c là các hệ số dương và f(x) có nghiệm. CMR: \(f\left(2\right)\ge9.\sqrt[3]{c}\)
cho f(x) là đa thức bậc 3 hệ số nguyên. Chứng minh: nếu \(3-\sqrt{2}\) là nghiệm thì \(3+\sqrt{2}\) cũng là nghiệm
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
Giải giúp mình:
P(x) là một đa thức hệ số nguyên có nghiệm là 2+\(\sqrt{3}\)
cmr: P( 2-\(\sqrt{3}\)) =0 hay 2-\(\sqrt{3}\)cũng là nghiệm của phương trình
f(x)là một đa thức có hệ số nguyên, Chứng minh rằng nếu f(0),f(1) ,f(2), f(3) ,f(4) đều không chia hết cho 5 thì phương trình f(x) = 0 không có nghiệm nguyên