Tìm môđun của số phức\(z=a+bi\) \(\left(a,b\in R\right)\) thỏa mãn \(z-4=\left(1+i\right)\left|z\right|-\left(4+3z\right)i\)
Cho số phức z thỏa mãn z ( 1 - 2 i ) + z ¯ i = 15 + i
Tìm môđun của số phức z.
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Cho số phức thỏa mãn: z=a+bi, ( a , b ∈ R ) thỏa mãn: z ( 2 + i ) = z - 1 + i ( 2 z + 3 ) . Tính S = a + b
Cho số phức z thỏa mãn z - 1 + 2 i =3 . Tìm môđun nhỏ nhất của số phức z-1 +i
A. 4
B. 2 2
C. 2
D. 2
Cho số phức z=a+bi với a,b thuộc R thỏa mãn z-3+i=|z|i . Giá trị của a+b bằng
A. -1
B.7.
C.5.
D.12.
Xét các số phức z = a + b i , ( a , b ∈ R ) thỏa mãn 4 ( z - z ¯ ) - 15 i = i ( z + z ¯ - 1 ) 2 . Tính F = - a + 4 b khi z - 1 2 + 3 i đạt giá trị nhỏ nhất
Cho số phức z thỏa mãn ( 1 - i ) z - 6 - 2 i = 10 . Tìm môđun lớn nhất của số phức z
A. 4 5
B. 3 5
C. 3
D. 3 + 5
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w